planit

Maths

Properties of Shape

Need a coherently planned sequence of lessons to complement this resource?

See our Properties of Shapes Steps to Progression document.

Twinkl Planlt is our award-winning scheme of work with over 4000 resources.

Aim

- To sort 3D shapes according to their properties.

Success Criteria

- I can describe the properties of 3D shapes.
- I can use a Venn diagram to sort 3D shapes.
- I can choose my own criteria to sort 3D shapes.

Remember It

Compare the 3D Shapes.

What is the same?

They both have:
6 faces
12 straight edges 8 vertices

The cube has square faces.
This cuboid has 6 rectangular faces.

The edges on the cube are the same length.
The edges of this cuboid are different lengths.

Remember It

Compare the 3D Shapes.

What is the same?

They both have 1 curved surface.

The sphere has no faces.
The cylinder has 2 circular faces.

Remember It

Compare the 3D Shapes.

What is the same?

Both shapes have triangular faces.

Both shapes have straight edges.

Both shapes have vertices.

What is different?

The triangular-based pyramid has 4 triangular faces.
The triangular prism has 2 triangular faces and 3 rectangular faces.

The triangular-based pyramid has 4 vertices. The triangular prism has 6 vertices.

The triangular-based pyramid has 6 edges. The triangular prism has 9 edges.

Remember It

Compare the 3D Shapes.

What is the same?

What is different?

Both shapes have at least 1 square face.

Both shapes have straight edges.

Both shapes have vertices.

The square-based pyramid has 1 square face and 4 triangular faces.

Cubes have 12 edges.
Square-based pyramids have 8 edges.

Find It

Can you find the 3D shapes to match the clues?

Sorting 3D Shapes

Can you sort these 3D shapes into the 2 sets?
 in either set?

Sorting 3D Shapes

Can you sort these 3D shapes into the 2 sets?

has vertices

Sorting 3D Shapes

These 3D shapes have been sorted into 2 sets.

Sorting 3D Shapes

These 3D shapes have been sorted into 2 sets.

How could they have been sorted?

Sorting 3D Shapes

Draw two circles on yoy whiteboard.

Venn Diagram

The set rings, or sorting rings you have been using are also known as Venn diagrams.

Venn Diagram

Why do you think the square-based pyramid is in the middle?

The square-based pyramid has both a square face and triangular faces so it belongs in both sets. It goes in the middle so it is in both rings at the same time.

Venn Diagram

Use the Venn diagram to sort these 3D shapes.

Which shape will you place in the middle?
Can you explain why?
at least
1 rectangular face

One cuboid has both square and rectangular faces so it belongs in both sets and needs to go in the middle.

Why did the cylinder stay outside of the rings?

Venn Diagram

Find different ways to sort the 3D shapes.

Which shape will you place in the middle?

Can you explain how you sorted them?

Where would we place those?

Do any of the shapes belong in both sets?

Are there any shapes that at don't belong in either set?

Branching Out

Sorting 3D Shapes

To sort 3D shapes according to their properties.
Sorting 3D Shapes

Cut out the pictures of 3D shapes and stick them in the correct space on the Venn diagram.
The 3D shapes that don't belong to either set can be stuck onto the space outside of the Venn diagram.

Dive in by completing your own activity!

Sorting Challenge

These objects represent different 3D shapes.
How would you group them?

Can you think of another way?

Aim

- To sort 3D shapes according to their properties.

Success Criteria

- I can describe the properties of 3D shapes.
- I can use a Venn diagram to sort 3D shapes.
- I can choose my own criteria to sort 3D shapes.

