1)

Calculation	Rounded Calculation	Estimated Answer	Actual Answer
$6999+2100$	$\mathbf{7 0 0 0}+\mathbf{2 0 0 0}$	$\mathbf{9 0 0 0}$	9099
$2456+7787$	$2000+8000$	$\mathbf{1 0} 000$	10243
$6149-1399$	$\mathbf{6 0 0 0}-\mathbf{1 0 0 0}$	5000	4750
$7503-1956$	$\mathbf{8 0 0 0}-\mathbf{2 0 0 0}$	$\mathbf{6 0 0 0}$	5547

2) a)

Day of the Week	Fish	Meat	Fruit and Vegetables
Monday	12000 g	25000 g	11000 g
Tuesday	25000 g	20000 g	16000 g
Wednesday	16000 g	7000 g	12000 g
Thursday	28000 g	14000 g	27000 g
Friday	7000 g	18000 g	14000 g
Approximate Total	$\mathbf{8 8 0 0 0 g}$	$\mathbf{8 4 0 0 0 g}$	$\mathbf{8 0 0 0 0 g}$

c) Wednesday $=\mathbf{1 6 0 0 0 g}+\mathbf{7 0 0 0} \mathrm{g}+\mathbf{1 2 0 0 0 g}=\mathbf{3 5 0 0 0 g}$

Friday $=7000 \mathrm{~g}+18000 \mathrm{~g}+14000 \mathrm{~g}=39000 \mathrm{~g}$
$39000 \mathrm{~g}-35000 \mathrm{~g}=4000 \mathrm{~g}$
d) The rounded number of vegetables prepared on Friday is 14000 g to the nearest 1000 g . This means that approximately 8000 g were prepared on Saturday.

1) Mikey rounded 135697 to the nearest 1000 and correctly wrote down 136000.

However, when rounding 3509 to the nearest 1000, Mikey rounded down to 3000 when he should
 have rounded up to 4000.

A more accurate approximation would have been 136 000-4000=132000.
2) a) 116611
b) Abdul rounded to the nearest thousand.
$126000-10000=116000$
Barry rounded to the nearest ten thousand.
130 000-10 000 = 120000
Carla rounded to the nearest hundred.
$126300-9700=116600$
Daniel rounded to the nearest ten.
126 280-9670-116 610
c) Although Daniel's calculation was most accurate, it would not be the quickest to calculate.

Barry's method would be quick to calculate, but is the least accurate.
Abdul's method was relatively close to the correct answer and would have been quick to calculate mentally.

1) a) $£ 14+£ 7+£ 9+£ 3=£ 33$
b) $£ 33$ per player $\mathbf{x} \mathbf{2 0}$
£ $33 \times 10=£ 330$
$£ 330 \times 2=£ 660$
c) $\mathbf{2 0}$ players in $\mathbf{5}$ squads = $\mathbf{1 0 0}$ players in total
$£ 33 \times 100=3300$
or: $£ 660$ per squad
$£ 660 \times 5=£ 3300$
d) Original approximation was $£ 3300$ for the whole academy.

If the plane tickets are now half price, each player's cost is reduced by $£ 6.90$, which is a saving of approximately $£ 700$ for the whole academy.
$\mathbf{£ 3 3 0 0} \mathbf{- £ 7 0 0}=\mathbf{£ 2 6 0 0}$
Or: The new cost per player is now approximately
£7 $\mathbf{+}$ £7 $\mathbf{+} \mathbf{9 + £ 3 = £ 2 6}$
So the total cost for the academy is $£ 26 \times 100=£ 2600$.
2) Investigative question. Multiple possible answers.

