A Day at the Fair

To solve two-step problems involving addition and subtraction.

Buying Ice Creams

Haleema and Erin have 10p to spend on ice cream toppings.
They buy 2 toppings. Choose 2 toppings that they could buy. How much change would they have from 10p?

Find the answers by using ten 1 p coins, a part-whole model or a ten-frame and ten counters.

Flake

$4 p+2 p=6 p$
$10 p-6 p=4 p$
I would get $4 p$ change from 10p.

Blueberries

$\underbrace{\begin{array}{c}\text { Quality Standart } \\ \text { Approved }\end{array}}$

A Day at the Fair

Hook-a-Duck

1

Answers

Buying Ice Creams

There are multiple answers, depending on the choice of topping.
Examples include: $1 p+8 p=9 p$ ($1 p$ change)

$$
6 p+2 p=8 p(2 p \text { change })
$$

Hook-a-Duck

Multiple answers, depending on the choice of ducks.
Examples include:
$3+4=7$ (3 points needed to win)
$5+3=8$ (2 points needed to win)
Accept any 2 different combinations of numbers.

A Day at the Fair

To solve two-step problems involving addition and subtraction.

Buying Ice Creams

Haleema and Erin have 20p to spend on ice cream toppings.

They buy 2 toppings. How much could they have spent and how much change would they have from 20p?

Which 2 toppings could they not afford to buy? How much more money would they need to buy these?

A Day at the Fair

1. Haleema's $1^{\text {st }}$ dart scored 8 points. Her $2^{\text {nd }}$ dart scored 7 points.

How many more points does she need to win?

2. Erin scored 4 more points than Haleema. Which 2 darts could she have thrown?
3. Can Erin win the game? Explain your reasoning.

Answers

Buying Ice Creams

1. Multiple answers, depending on the choice of topping.

Examples include:
$7 p+8 p=15 p$ (5p change)
$9 p+7 p=16 p$ ($4 p$ change)
2. Accept any 2 toppings which would total more than $\mathbf{2 0 p}$. Examples include:
$10 p+11 p=21 p$ (They would need another 1p.)
$11 p+12 p=23 p$ (They would need another 3p.)

Darts

1. $8+7=15$

20-15 = 5
Haleema needs 5 more points to win.
2. Erin must have thrown the 9 and the $\mathbf{1 0}$ as her score is 19 and these are the only numbers that add up to this score.
3. Erin can't win the game. She needs to hit a 1 with her last score to get exactly 20 points to win, but there is no 1 on the dart board.

A Day at the Fair

To solve two-step problems involving addition and subtraction.

Buying Ice Creams

Haleema and Erin have 20p to spend on ice cream toppings.

Which 2 toppings could they not afford to buy? How much more money would they need to buy these?

A Day at the Fair

1. Haleema's $1^{\text {st }}$ dart scored 8 points. Her $2^{\text {nd }}$ dart scored 5 points. How many more points does she need to win?
\qquad
\qquad
\qquad
2. Erin scored 4 more points than Haleema. Which 2 darts could she have thrown? Can Erin win the game? Explain your reasoning.
\qquad
\qquad
\qquad

Answers

Buying Ice Creams

Many possible answers, such as:
10p + 11p = 21p (They would need 1p more.)
$10 p+12 p=22 p$ (They would need $2 p$ more.)
$11 p+12 p=23 p$ (They would need 3p more.)

Darts

1. $8+5=13$

20-13=7
Haleema needs 7 more points to win.
2. Erin could have thrown:

9 and 8 or
10 and 7 or
11 and 6 or
12 and 5
Erin can't win the game. She needs to hit a 3 with her last score to get exactly $\mathbf{2 0}$ points to win, but there is no 3 on the dart board.

